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15463 Final Project: 3D Structured Light with XOR, Binary, Gray Codes
RUSLANA FOGLER, Carnegie Mellon University

Three-Dimensional Structured Light is a method used to reconstruct point
clouds of a 3D scene by relying on matching correspondences between a
camera and a projector. This process is highly advantageous for recon-
structing stationary scenes because it is more efficient point matching
than conventional stereo vision with two cameras, because of rapid and
cost-effective data capture, and because it can be reused to develop more
scenes after the calibration is completed. By using binary or gray codes,
the number of images required to create point correspondences is reduced
to ⌊𝑙𝑜𝑔2Number of Column Pixels⌋, but the results are also susceptible to
subsurface light scattering and interreflections. Instead, another approach is
using XOR codes, which are more robust to the aforementioned phenomena.
In my 15463 final project, I implemented a 3D Structured Light project that
supports binary, gray, and XOR codes.

Additional Key Words and Phrases: Camera Calibration, Projector Calibra-
tion, Structured Light, Stereo Vision, 3D Reconstruction
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1 INTRODUCTION

1.1 3D Structured Lighting Background
Since the late 20th century, 3D Structured Light has gained traction
as being an efficient, relatively cheap, and highly accurate way to
construct a 3D visualization of a scene. This growth has culminated
in efforts such as the Digital Michelangelo Project [1], enormous
amounts of research, and applications to industries such as manu-
facturing, healthcare, cultural preservation, etc. To use the method,
a user must set up a light projector and a camera pair to face a scene.
The light projector is made to shine a number of certain known
patterns on a scene–typically in the form of column stripes. The
camera is used in tandem to capture images.
With the acquired image data, the user can extract row/column

correspondences from the illuminated scenes. If the camera and
projector’s intrinsic and extrinsic parameters are known, they can
be used to form a stereo pair, and the decoded row/columns serve
as epipolar point correspondence. By back-projecting rays and per-
forming triangulation, the depth of a scene can be recovered.
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1.2 Binary/Gray Lighting Patterns
The most naive pattern to project onto a scene for Structured Light
Decoding is illuminating each column. Then, the camera can take a
picture for each column that has been illuminated, and column cor-
respondences can be easily picked out with each picture. However,
this requires taking as many as 4000 pictures if the user’s picture
was 4000 pixels wide, which is very impractical.

Instead, a better method is projecting a set of black-and-white
binary or gray code stripes onto the scene. With this pattern, each
point on the object is illuminated with a different series of stripes
per picture, and the unique code can be picked out to identify the col-
umn correspondence. These methods reduce the number of images
down to ⌊𝑙𝑜𝑔2Number of Column Pixels⌋. While effective, binary
and gray code stripe illumination both have weaknesses.

1.3 Global Illumination Problems
Unfortunately, when a scene is globally illuminated by a low-frequency
pattern from long ranges, objects within the scene are subject to
strong inter-reflections. These additional artifacts will cause certain
parts of the scene to appear brighter in captured image, and if they
exceed a certain threshold, they can derail the point correspondence
decoding afterwards. In these circumstances, higher frequency light
is more suitable. However, shining high frequency light on a scene
is also to susceptible to effects such as sub-surface scattering, where
the projector’s incident light is low-pass filtered out by nature of
the scene and correspondences become difficult to find.

Fig. 1. Errors in reconstruction from interreflections/sub-surface scatter-
ing.From figure 7 of Paper "A Practical Approach to 3D Scanning in the
Presence of Interreflections, Subsurface Scattering and Defocus"

To solve this problem, Gupta et al. [2] proposed obtaining the
low-frequency illuminated light result by applying an XOR to two
high frequency patterns. This preserves the ability to obtain Struc-
tured Light data without inter-reflections by shining high frequency
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patterns all throughout, and also enables the user to obtain the
would-be low frequency direct lighting result through an additional
operator. Thus, XOR codes are a more robust way to collect ac-
curate point correspondences for 3D Structured Light. While not
entirely free of long/short range or other complex light effects, they
outperform binary and gray codes in theory.

2 METHODS

2.1 Implementing Codes and Decoding
After securing equipment (a Sony A7III Camera, tripod, Kodak Luma
350 Projector), the first step was to create a series of binary, gray, and
XOR codes. These images were rather straightforward to generate
with numpy array functions, and for XOR, XOR-04 for used for
the first version (XOR-ing final image as the reference base plane).
Much of my algorithms for generating patterns were taken from
online procedures [3].

Fig. 2. Gray-Code Decoded Amongus 3D Print, from 10 gray code projec-
tions

Fig. 3. XOR-Code Decoded Amongus 3D Print, from 10 XOR code projec-
tions

Decoding was equally straightforward. The scene was chosen to
be of an image 2048 x 2048 pixel size, because increasing the columns
any larger would lead to increasingly inaccurate decodings (short-
range effects). After capturing 10 images of the scene, the images
were stacked and codes were extracted per-pixel. The threshold for
determining a corresponding ’0’ or ’1’ in each pixel position across
the stack of images was simple the per-pixel mean of the stack.

2.2 Camera Calibration
To use stereo triangulation, the camera’s intrinsic and extrinsic
parameters needed to be found. Finding the camera’s intrinsic pa-
rameters involved simply capturing images of the 9x7 chessboard

from a series of different poses and then using Zhang’s method [4]
via cv2.calibrateCamera to extract the intrinsic and distortion.
This process actually took significant amounts of time and re-doing,
especially after a belated realization that cropping an image would
alter the camera’s respective 𝑓 parameters.

Fig. 4. Camera Calibration Image 1

Fig. 5. Camera Calibration Image 2

2.3 Projector Calibration
Another requirement that was needed for stereo triangulation was
the projector’s intrinsic and extrinsic parameters. Ultimatley, the
method used was from Daniel Moreno and Gabriel Taubin’s pro-
jector calibation proposal [4]. Their paper proposed the following
method: after calculating the camera’s intrinsic parameters, pro-
jector calibration can be done by projecting all gray code patterns
onto a chessboard at various poses (in this case, five were used).
Then, to approximate the projector’s intrinsic matrix, the row/col
of each chessboard corner that were captured by the camera could
be mapped by homography to the gray-decoded image. Instead of a
global homography, however, the process was made more robust
by capturing individual homographies in a patch neighborhood for
each corner. If a homography was found successfully, it could be

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: December 2025.
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ALGORITHM 1: Projector Calibration
Input: Chessboard Images 𝐼𝑐ℎ𝑒𝑠𝑠𝑏𝑜𝑎𝑟𝑑𝑠 , decoded gray-code image

𝐼𝑑𝑒𝑐𝑜𝑑𝑒𝑑 , Camera’s Intrinsic Matrix and Distortion
Parameters 𝐾𝑐 , 𝑑𝑐

Output: Projector’s Intrinsic Matrix, Projector’s Distortion
Parameters 𝐾𝑝 , 𝑑𝑝

;
for each image 𝐼 in 𝐼𝑐ℎ𝑒𝑠𝑠𝑏𝑜𝑎𝑟𝑑𝑠 do

𝐶𝑜𝑟𝑛𝑒𝑟𝑠𝑐 = findChessboardCorners(𝐼 , 𝐾𝑐 , 𝑑𝑐 )
for each 𝑐𝑜𝑟𝑛𝑒𝑟𝑐 in𝐶𝑜𝑟𝑛𝑒𝑟𝑠 do

𝑝𝑎𝑡𝑐ℎ = get_neighborhood(𝑐𝑜𝑟𝑛𝑒𝑟 )
for 𝑝𝑥 , 𝑝𝑦 in 𝑝𝑎𝑡𝑐ℎ do

if decoded[𝑝𝑦 ] - 𝑝𝑥 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then
𝑝𝑝𝑥 = decoded[𝑝𝑥 ] 𝑝𝑝𝑦 = 𝑦

end
end
𝐻 = getHomography(all 𝑝𝑝𝑥 , all 𝑝𝑝𝑦 )
if H exists then

𝑐𝑜𝑟𝑛𝑒𝑟𝑝 = H × 𝑐𝑜𝑟𝑛𝑒𝑟𝑐
𝐶𝑜𝑟𝑛𝑒𝑟𝑠𝑝 .append(𝑐𝑜𝑟𝑛𝑒𝑟𝑝 )

end
end

end
𝐾𝑝 , 𝑑𝑝 = calibrateCamera(𝐶𝑜𝑟𝑛𝑒𝑟𝑠𝑐 ,𝐶𝑜𝑟𝑛𝑒𝑟𝑠𝑝 , 𝐼𝑐ℎ𝑒𝑠𝑠𝑏𝑜𝑎𝑟𝑑𝑠 )

used to map the camera’s captured chessbord corner to the projec-
tor’s decoded version to form a new point, which then could be fed
into cv2.calibrateCamera to find the projector’s intrinsic matrix
and distortion parameters.

Fig. 6. Checkerboard Pose 1, Projector Calibration Corner Mapping via
patch neighborhood homographies

Fig. 7. Checkerboard Pose 2, Projector Calibration Corner Mapping

Then, after finding intrinsic/distortion parameters for both the
camera and projector, the extrinsic Rotation and Translation ma-
trices from one to the other were found with a stereo calibration
function call (cv2.stereoCalibrate).

This process was easily the most arduous of the final project, and
had to be redone many times due to numerous situational lighting
problems or algorithm issues.

2.4 Triangulation
After calculating the camera’s Intrinsic Matrix and distortion 𝐾𝑐 , 𝑑𝑐 ,
the projector’s Intrinsic Matrix and distortion 𝐾𝑝 , 𝑑𝑝 , and the Cam-
era to Projector stereo rotation and translation vectors 𝑅,𝑇 , solving
the triangulation problem becomes extraordinarily simple. First, we
back-project the camera point with its perspective matrix 𝐾𝑐 [𝐼 |0]
and distortion parameters, where 𝐼 is a 3x3 identity matrix. Then, we
similarly back-project the same point with the projector perspective
matrix 𝐾𝑝 [𝑅 |𝑡] and its own distortion parameters, and measure the
intersection. The 𝑧 value found at that intersection corresponds to
the depth from the stereo pair. By performing this operation with
each detected point correspondence found in the Structured Light
decoded image, a point cloud can be formed.

Fig. 8. Setup Picture 1

Fig. 9. Decoded Correspondence Points found in Gray code patterns on
Among Us
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Fig. 10. Decoded Correspondence Points found in XOR patterns on Among
Us

3 EXPERIMENTAL EVALUATION

Fig. 11. Setup Picture 1

Fig. 12. Setup Picture 2

The procedure above was done with gray codes, binary codes, and
XOR codes. While XOR codes were expected to produce the best
result, due to projector resolution difficulties, they performed rela-
tively weaker compared to the gray code and binary code results.
However, what can be seen of their shape is more promising in
regards to removing inter-reflection artifacts, as expected. Unfor-
tunately, the time before the final project deadline was too tight to
implement the truly robust method in Gupta et al’s paper, where a
combination of low-frequency gray codes of two types and XOR-2,

XOR-4 codes could be used to cross-verify and produce the best
result.

Fig. 13. Among us, projected with Binary Codes

Fig. 14. Among us, projected with Gray Codes

Fig. 15. Among us, projected with XOR Codes

Here, clearly, the XOR code did not overwhelmingly outperform
the gray and binary codes as anticipated. However, if one examines
closely, I think it handles the shiny 3D-printed material specularity
better and captures the shape with less distortion in various portions.
The same goes for the Waddle Dee and Kombucha Bottle below.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: December 2025.
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Fig. 16. Waddle Dee and Kombucha Bottle, projected with Gray Codes

Fig. 17. Waddle Dee and Kombucha Bottle, projected with XOR Codes

4 POTENTIAL DIRECTIONS
Because camera and projector calibration took an extensive por-
tion of time, it was difficult to attempt more ambitious Structured
Light code patterns. Other codes include Parsa et al’s proposed À
La Carte Structured Light Patterns [5], where image data can be
fed int a ZNCC (zero noramlized cross correlation) and a maxi-
mum likelihood objective function can be formed to find optimal
structured light patterns for a given noisy image. Like what was
mentioned above, another avenue that would have been promising
to explore would be to have implemented the minimum gray stripe-
width codes and XOR-2 codes, and create a self-verifying pipeline
resistant to low-range and high-range light effects.

5 CONCLUSIONS
Structured light offers an efficient, relatively cheap, and accurate
method for 3D scene reconstruction. This project explored vari-
ous approaches to structured light, including binary codes, gray
codes, and XOR codes. While XOR codes were expected to outper-
form others due to their robustness to global illumination issues,
projector resolution limitations hindered their performance in this
experiment.

While the implementations of algorithms for camera and projec-
tor calibration, along with triangulation to create a 3D point cloud
were successful, the camera and projector calibration proved to be
a time-consuming bottleneck. After having learned first-hand how
to calibrate, I’m sure that I could go further with the other pursuits
mentioned above if I had more time. Examining À La Carte struc-
tured light patterns or implementing minimum gray stripe-width
codes with XOR codes could lead to a more robust system resis-
tant to various light effects. Additionally, more complex structured

light code patterns or real time would have been also wonderful to
implement.
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