
15-418: Profiling Partitioned Convolution on a

GPU for Real-Time Applications

Melinda Chen, Ruslana Fogler

May 2024

1 Summary

We implemented partitioned audio convolution on the GPU using several strate-
gies for memory management and pipelining. We compared the performance
and characteristics of GPU accelerated linear convolution, naive overlap-add,
overlap-add with streaming, and overlap-add with streaming and pinned mem-
ory to hide memory transfer latency.

2 Background

2.1 Setup, Inputs, Outputs

When performing convolution for the sake of audio processing (i.e. convolu-
tion reverb), there are generally 2 important inputs: signal and impulse. The
impulse is usually a sharp sound which captures the frequency response of an
environment (i.e. someone clapping inside of a concert hall). When convoluted
against the signal, it outputs a result which sounds like the signal played in the
impulse’s environment. All the algorithms described below follow the general
structure of taking in an impulse and signal and returning a convoluted wav
file. While we were not able to set up a real-time streaming interface in time,
we imposed constraints on the ways in which we could parallelize the problem
(i.e. disallowing parallelizing across signal chunks) so that our approach could
more easily extend to real-time applications.

2.2 Core Algorithms

The main strategies and algorithms we investigated were: linear convolution,
overlap-add, and overlap-add using CUDA streams. Linear convolution was
parallelized simply by assigning each CUDA thread to a single element in the
output and iterating over pairs of values in the signal and impulse around that
element, summing the multiple of the pairwise multiplication to yield the con-
voluted output.

1



Unfortunately, the process of linear convolution is highly expensive, as it is
an O(n2) operation, and also relies on the entirety of the input signal and im-
pulse signal to be known. Hence, state-of-the-art convolution algorithms utilize
the fact that multiplication in the frequency domain yields the same result as a
time domain convolution. This process requires a fast fourier transforms to turn
time domain signals to the frequency domain and back, which have complexity
of O(nlog(n)). As a result, this process is computationally far more scalable
than basic linear convolution. Furthermore, to this end, these algorithms par-
tition their inputs into specifically-sized chunks that are suitable for the fast
fourier transform in use(otherwise, they become susceptible to circular alias-
ing). This chunk size is determined by the length of the impulse reverb signal.

For the basis of our partitioned convolution implementation, we used the
overlap-add algorithm (Figure 1). In overlap-add, the input signal is split up
into overlapping chunks which are then padded, Fourier transformed, multiplied
point-wise against the Fourier transform of the impulse, then inverse Fourier
transformed to yield the convoluted output. Overlapped sections are added
together to yield a seamless sounding result.

Figure 1: Overlap Add Algorithm

2.3 Key Operations and Data Structures

Across all algorithms, audio information was represented using float arrays.
Before performing Fourier transforms on the data, it was converted into complex
number form (functionally, float2 arrays, where the first element represents the

2



real component and second element represents the imaginary component).
The major operations performed on the audio inputs include:

• Fast Fourier Transform (and its inverse): Conversion from time domain to
frequency and vice-versa, allows us to carry out convolution via pointwise
multiplication

• Complex Multiply: Actual convolution step - multiplication of frequency-
domain impulse against signal

• Overlap-Add: Combination of outputs in overlapping sections of chunks.

For our overlap-add implementation, we had buffers on the host side to store
the complex conversion of our input signal chunks and the convoluted output.
On the device side, we had buffers to store the output of the impulse and signal
chunk FFTs, as well as 2 buffers to store inverse FFT outputs from adjacent
chunks which would then be overlap-added together.

2.4 Workload and Dependencies

All of the operations mentioned above could benefit from parallelism. Addi-
tionally, since performing a FFT on the signal eliminates dependencies between
elements when performing the actual convolution, parallelizing the complex mul-
tiplication becomes very simple. Given that elements in the signal chunk are
laid out temporally, there is also plenty of locality to exploit. Overall, the lack
of dependencies and between elements (excluding performing the actual FFT),
lack of divergence, and simple, coalesced data layout make this problem a very
good fit for GPU acceleration.

While the overall data layout and operations are well suited for the GPU, the
main challenge (which we will delve into significantly more detail later) comes
from getting the data to the GPU in an efficient manner. In particular, we
approached this problem with the goal of being able to extend our work to real-
time applications, which meant that we couldn’t parallelize over all the chunks
of the input signal (which would be analogous to pulling sound from the future
if we were to use this algorithm to carry out real-time convolution) and would
have to deal with constantly copying memory back and forth from the GPU to
CPU and vice versa. Thus, the dependency of all the GPU operations on fresh
data ended up being the most important and difficult part of our pipeline to
optimize.

3 Approach

3.1 Libraries/API’s/Machines used

To load in audio files in a format that we could manipulate, we used the Au-
dioFile library to read in wav files. This gave us AudioFile<float> objects

3



which contained information about the input’s channels, bit depth, sample rate,
and length. Each AudioFile object also contained an AudioBuffer which stored
the actual samples associated with the audio file in a float array.
For our GPU implementation, we used CUDA-11.7 on the GHC machines (with
NVIDIA GeForce RTX 2080 B GPUs). The FFT and inverse FFT operations
were performed using the cuFFT library. We also used some utils functions (i.e.
CUDA RT CALL) from the cufft utils.h. All other kernels were implemented
by us.
For our sequential implementation, we used the kissfft library.

3.2 Core Implementations

A high-level overview of how we implemented overlap-add on the GPU can be
seen below (Figure 2). After loading in both the impulse and signal, for each
output audio channel, the impulse was copied to device memory, and Fourier
transformed. Chunk size was calculated based on the size of the impulse rounded
to nearest power of 2.

For each signal chunk, the section of the audio buffer was converted into a
complex<float> type before being copied to device memory. The chunk was
then Fourier transformed using cufftExecC2C(). The signal chunk and impulse
were pointwise multiplied against each other using a kernel with each thread
handling one element. That is, if the chunk (and by extension the complex-to-
complex FFT output) contained N elements, we would launch N (rounded up to
multiple of 512) threads.

The convoluted chunk was then inverse Fourier transformed using another
call to cufftExecC2C(), with the output being written to either an even or
odd buffer depending on the parity of the chunk and combined with the prior
chunk’s result using another kernel (with threads being assigned to individual
elements in the same way as the complex multiplication kernel). The combined
output was then copied over back into host memory.

4



Figure 2: Overlap Add CPU/GPU Breakdown

Overall, the structure of the convolution portion of our implementation was
quite similar to the sequential version. However, the way in which we managed
memory transfer was significantly more involved.
Notably, since steps S4, S5, S6 and S7 all wrote their outputs into separate
buffers, it would not impact the correctness of the algorithm to overlap memory
transfers with computation for adjacent chunks. Additionally, after profiling our
initial parallel overlap add implementations, we observed that memory transfer
was undeniably our main bottleneck (Figure 3).

Figure 3: Memcpy Bottleneck

Thus we decided to focus most of our effort on an implementation that used
streaming to hopefully overlap the latency of memory transfers with compu-
tation from the previous chunk (Figure 4). Ultimately, to accomplish this we
allocated buffers in pinned memory to copy the complex input signals into,
then used two CUDA streams to handle convolution and memory transfer for
alternating chunks.

5



Figure 4: Overlap Add Streaming Strategy

Figure 5: Overlapping Memory Transfer with Kernel Calls

3.3 Optimizing our Results: Tricks played

To analyze our code, we used a combination of nvprof, timing kernel/algorithm
execution with <chronos>, and nsys-ui. From nvprof outputs, we saw that the
majority of our time was spent in cudaMemcpy, which led us down the path of
focusing on ways to reduce the impact of memory transfer latency. Importantly,
just coalescing the cudaMemcpys together was not an option given our constraint
of not parallelizing across signal chunks.
We tried many different configurations of streaming before reaching our final
implementation. Our initial implementation of streaming actually ended up
performing worse than the naive parallel overlap-add algorithm for a couple
of reasons. Firstly, to prevent other streams from modifying a buffer before
it was finished being copied to/from, we used a cudaStreamQuery followed by
a cudaStreamSynchronize. Since this would wait for the whole stream to
finish execution, even if stream A were to query stream B after B had finished

6



its memory transfer (i.e. now performing some computation on the GPU), it
would not be able to start its memory transfer until after stream B finished its
computation, effectively eliminating any possibility of overlapping computation
with memory transfer (while also adding some overhead).
We also played around with the mapping of cuFFT plans to streams. Initially, we
had allocated two cuFFT plans to use for transforming the impulse and signal,
however we realized that it would be a waste of memory given that the impulse
only needed to be Fourier transformed once, and the overhead from allocating
working sets for multiple plans was not trivial.
We also realized that in order for streaming to be truly effective, we would
have to allocate buffers in pinned memory for both copies to and from device,
otherwise the memory copies would block further kernel calls. In a similar vein,
we played around with the position of the memory copy to device relative to
writing the input values into the pinned memory buffer such that waiting on
copying values to the buffer on the host would not block a call to a memory
copy to/from device on a different stream.

4 Results

4.1 Performance Profiling

Our performance was measured by the speedup between our new Cuda imple-
mentations and our original sequential Overlap-Add Algorithm. In addition,
to improve our first Cudafied Overlap-Add Algorithm, our primary benchmark
was measuring the speedup of our streaming/pinned memory + streaming im-
plementations.

We aimed to achieve the fastest convolution while keeping the real-time
constraint of expecting our inputs to be processed in block chunks over time.

4.2 Experimental Setups

Our primary experimental setup was initializing an input audio buffer of random
float values that were sizes of powers-of-two, running Cuda implementations on
each sized buffer, and timing the execution. We used two different wav file
reverb impulse responses against each randomly-initialized audio buffer to also
keep track of how impulse response size affected our result.

For the impulse response wav file ”hm.wav”, which was a 3-second concert
room impulse response, we measured our Cudafied linear convolution, Cudafied
Overlap-Add, Cudafied Streaming Overlap-Add, and finally Cudafied Streaming
Overlap-Add with pinned memory buffers. All these programs were compared
against our sequential Overlap-Add algorithm on a sweep of audio buffer sizes
from 216 to 224.

Then, for the impulse response wav file ”Muladhara.wav”, a 4-minute guitar

7



track from the video game Digital Devil Saga 1, we repeated the same measure-
ment process with a sweep of audio buffer sizes from 225 to 229.

Then, we calculated speedup of each test run and graphed our results.

4.3 Speedup Results

Our speedup results are as follows. Our configurations included testing our
Cuda implementations over two vastly different sized impulse responses over
many different audio buffer sizes.

4.3.1 Over Shorter Reverb Impulses

Figure 6: Sequential Speedup observed over Convolving against hm.wav, a
shorter impulse response

8



Figure 7: Basic Cuda OLA Speedup observed over Convolving against hm.wav,
a shorter impulse response

Above, it can be seen that we encountered huge speedup between our Cudafied
versions of Overlap Add against the first sequential algorithm. This was very
expected, as the GPU is capable of multiplying the input and impulse frequency
responses in parallel, and the cuFFT library was also faster than kissfft’s se-
quential approach. We then sought to make our algorithms better by using the
Cuda Overlap Add as our baseline. Our final implementation–Cuda Overlap
Add with streaming and pinned memory–performed considerably better than
our other implementations.

Our second graph conveys the speedup we acquired over improving the first
CUDA Overlap Add algorithm.

Our pinned memory + streaming implementation’s speedup gets worse over
shorter reverbs, but it is still consistently far better than our implementation
with only having attempted to integrate streaming. Pinned memory is first
initialized by copying over paged memory to an unpageable memory location,
which is an amortized process to ensure later data transfers are faster.

Another interesting observation is that our Overlap Add algorithm’s speedup
is significantly better than our naive Cuda linear convolution, in spite of the
GPU’s ability to multiply points massively in parallel.

9



4.3.2 Over Longer Reverb Impulses

Figure 8: Sequential Speedup observed over Convolving against Muladhara.wav,
a longer impulse response

10



Figure 9: Basic Cuda OLA Speedup observed over Convolving against Mulad-
hara.wav, a longer impulse response

11



Again, as expected, we encountered massive speedup for our Cuda implementa-
tions of convolution over our sequential implementations. In fact, this speedup
is even greater than before because the larger impulse response. Above, it can
be seen that using streaming and pinned memory strategies produced consid-
erable speedup over our initial implementation of Overlap Add and our naive
GPU linear convolution code.

Across larger impulse responses and larger audio buffer sizes, our pinned
memory + streaming algorithm is consistently way better than our implemen-
tation that only does streaming.

4.4 Problem Size–Changing the Workload

Changing the workload of impulse response sizes produced a notable difference
between our pinned memory + streaming implementation. While our combi-
nation of pinned memory and streaming had consistently larger speedup over
large impulse responses and larger input sizes, the speedup actually decreased
for shorter impulse responses and larger input sizes. We suspect that this may
come down to initialization behavior sensitivity differences on very small input
sizes.

Another observation is that our speedup begins to taper off more and more
on larger sample sizes.

4.5 Speedup Limitations

Over larger and larger sample sizes, we began to see the speedup taper off.

Figure 10: Cuda Stream Pipeline as obtained from nsys-ui

Since our kernels (cuFFT, combine, complex-multiply) are highly optimized
for speed and simplicty of operation (no branching), they are relatively trivial
to any speedup ceiling. Instead, waiting on memory copies and transfers are our
main source of bottlenecks. There are three crucial roofs to our ability to obtain
more speedup: the bandwidth/time limitation in Cuda’s memcpy processes and
the need for our pipeline’s Cuda Streams to synchronize. In addition, overlap
add is inherently a sequential algorithm. A barrier to greater parallelization is
that we are choosing to develop this algorithm for a real-time purpose, so the

12



assumption is that the input becomes available as block chunks over time; the
entirety of the input is not known at the start of the program.

4.5.1 memcpy

One of the most expensive processes of our algorithm is the need to call memcpy
frequently to move data between the cuFFT forward/inverse plans and the
kernel to perform the complex multiply. Since this is an inherent, crucial part
of the Overlap Add algorithm, it can’t be removed. However, we were able to
optimize the time consumption of the memcpy routine by incorporating streams
and memcpyAsync. This enables us to perform a forwards fourier transform right
after the current section is finished with the forwards cuFFT, without waiting
for the entire section to be finished processing. Hence, the cost of the memcpy’s
are more staggered and consume less overall program time. Regrettably though,
memcpy routines cannot be reduced.

4.5.2 Synchronization

Another major blocker to speedup for our algorithm is the need to synchronize
the cuda streams. In order for our pipeline to function, we need to ensure that
the streams are coordinated with each other, otherwise audio aliasing occurs.
One area where are synchronization is necessary is to allow the forwards cuFFT
memcpyAsync and fast fourier transform to complete before performing the com-
plex multiply between its frequency response and the impulse response.

Another area where synchronization is necessary is before our combine ker-
nel, where the overlapping sections of the section convolutions are summed
together. Since the completed convolution of each section depends on the prior
section’s overlapping values, failing to synchronize this region also impacts the
convolution’s correctness. Since this pipeline dependency cannot be eliminated,
it actively prevents us from easily achieving more speedup.

4.5.3 Real-Time Inhibitions

A major constraint on our attempt to optimize convolution is that we intend this
pipeline to be in use for real time convolution purposes. In this circumstance,
we must assume that the entirety of the input signal is not entirely available at
the start of the program. This means that we can’t simply partition every X[n]
section and lauch more cuFFT plans for sections in the future; in a realtime
context, those future sections have not arrived yet. This sequential limitation
also places a major constraint on our efforts to parallelize. This limitation is
also visible when looking at Figure 10. The gaps between CUDA API calls cor-
respond to time spent copying from the audio buffer into pinned memory and
vice versa. When dealing with real-time applications, this constraint would still
exist, except instead of copying from an audio buffer that is read in from a file,

13



we would need to copy from an input audio stream.

4.6 Execution Time Breakdown

Figure 11: Cuda Stream Pipeline as obtained from nsys-ui

By using nvprof throughout our Cuda implementation, we were able to see the
areas of program time consumption rather well. Through nvprof, it seems like
the greatest part of time consumption of our program is cudaMalloc. Since
our kernels include an already-optimized Cuda fast fourier transform algorithm
and a massively parallelized complex multiply operation with no branching, our
kernels occupy infinitesimal time percentage in our program.
Since much of our program’s operations of cuFFT buffer copying, complex mul-
tiply, and cuIFFT buffer are pipelined through usage of Cuda streaming and
pinned memory implementations, the latency of such operations are hidden.

Since a non-negligible amount of program time consumption is due to cudaMalloc,
a small optimization we could further do is to use complex-to-real and real-to-
complex fast fourier transforms instead of complex-to-complex ones. This would
allow us to cut the size of our fourier transform output in half, because we can
exploit the fact that real signals are symmetric in the discrete frequency do-
main. While a fast fourier transform of a P-length input for a complex-complex
operation yields P values, a fast fourier transform of a P-length input for real to
complex is optimized to yield ⌈P

2 ⌉ values. Of course, the inverse(real to complex)
would once again yield P values. Hence, the size of our fft output buffer would
use less memory our cudaMalloc and cmul kernels could be slightly smaller.
However, our larger bottlenecks reduce the capability for additional optimiza-
tion.

14



4.7 Justifying Machine Choice

Since the process of massive parallel multiplications is key to the overlap add
algorithm and the GPU is amazing at performing identical multiplications on
a monumental scale, we feel that choosing the GPU for convolution reverb was
very justified. No other tool that we’ve seen seems better suited for this purpose.

However, another interesting implementation that we encountered while re-
searching the subject was a multi-threaded realtime convolver on the CPU. With
this approach, the researcher was able to have some threads manage work large
granularity work queues for the bulk of the convolution reverb process, and other
threads manage small granularity work queues to hide the real-time latency of
the convolution reverb. While we didn’t ultimately have time to explore this
approach, it would have been interesting to investigate the CPU’s ability to
perform realtime convolution. Arguably, this non-uniform partitioning includes
some amounts of branching, which would have been disadvantageous for a GPU
to perform.

Another justification for using a CPU could have been exploring how the
CPU handled openMP implementations. The kissFFt library chosen for our se-
quential overlap-add prototype included openMP support for parallel butterfly
fast fourier transform routines, and we could have also used those to see some
startling speedup.

Furthermore, much research into GPU realtime convolution deals with the
idea of needing to convolve larger and larger signals against each other. In
circumstances like this, we realized that through our GPU sweep performance
experiments that 229 was the maximum float buffer that we could allocate on
a single machine. With MPI, the possibility of doing more forms of incredibly
large convolution with the cooperation of several GPUs becomes more possible.

5 References

• Bui, Cindy. GPU Acceleration of Massive Convolution, NYU Steinhardt
Music Technology, 14 Dec. 2018, cindybui.me/images/Capstone Report.pdf.

• Belloch, Jose A, et al. “Real-Time Multichannel Audio Convolution —
GPU ... - Nvidia.” Real-Time Multichannel Audio Convolution, Nvidia,
2009, www.nvidia.com/content/gtc-2010/pdfs/2116 gtc2010v2.pdf.

• Sadreddini, Maryam. “Non-Uniformly Partitioned Block Convolution on
Graphics Processing Units.” (2013).

• Kundur, Deepa. Overlap-Save and Overlap-Add, ww2.comm.utoronto.ca/ dkun-
dur//course info/real-time-DSP/notes/8 Kundur Overlap Save Add.pdf. Ac-
cessed 5 May 2024.

15



• Harris, Mark. “How to Optimize Data Transfers in CUDA C/C++.”
NVIDIA Technical Blog, 21 Aug. 2022, developer.nvidia.com/blog/how-
optimize-data-transfers-cuda-cc/.

6 Distribution of Work Load Balancing

Ruslana (50%):

• Sequential Overlap Add Algorithm Design

• Kissfft, Audiofile library integration

• PortAudio for Realtime Tests (did not end up in project, sadly)

• Setting up Random Vectorized buffers for Profiling setup

• Profiling Cuda Streaming, Pinned Memory + Streaming Implementation

• Profiling Sequential Overlap Add Algorithm

• Report Writing: Results, References, Work Distribution

Melinda(50%):

• Cuda Overlap Add Implementation

• Setting up Cuda library

• Cuda Overlap-Add Streaming Implementation

• Cuda Nsight/Nsys tool setup

• Cuda Overlap Pinned Memory + Streaming Implementation

• Report Writing: Summary, Background, Approach

16


